\(\int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [358]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 135 \[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-6/5*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+10/21*a*(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/7*a*sin(d*x+c)/d/cos(d*x+c)
^(7/2)+2/5*a*sin(d*x+c)/d/cos(d*x+c)^(5/2)+10/21*a*sin(d*x+c)/d/cos(d*x+c)^(3/2)+6/5*a*sin(d*x+c)/d/cos(d*x+c)
^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {4310, 2827, 2716, 2720, 2719} \[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {10 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 a \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {6 a \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[In]

Int[(a + a*Sec[c + d*x])/Cos[c + d*x]^(7/2),x]

[Out]

(-6*a*EllipticE[(c + d*x)/2, 2])/(5*d) + (10*a*EllipticF[(c + d*x)/2, 2])/(21*d) + (2*a*Sin[c + d*x])/(7*d*Cos
[c + d*x]^(7/2)) + (2*a*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (10*a*Sin[c + d*x])/(21*d*Cos[c + d*x]^(3/2))
 + (6*a*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 4310

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Sin[a + b*x])/Sin[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {a+a \cos (c+d x)}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = a \int \frac {1}{\cos ^{\frac {9}{2}}(c+d x)} \, dx+a \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {1}{5} (3 a) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{7} (5 a) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {1}{21} (5 a) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{5} (3 a) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {6 a E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {10 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a \sin (c+d x)}{7 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {10 a \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.21 (sec) , antiderivative size = 294, normalized size of antiderivative = 2.18 \[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left ((189 \cos (c)+85 \cos (d x)-85 \cos (2 c+d x)+231 \cos (c+2 d x)+21 \cos (3 c+2 d x)+25 \cos (2 c+3 d x)-25 \cos (4 c+3 d x)+63 \cos (3 c+4 d x)) \csc (c)-200 \cos ^4(c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)-\frac {126 \cos ^3(c+d x) \sec (c) \left (-2 \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c)))+(3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \csc (c) \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{\sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}}\right )}{840 d \cos ^{\frac {7}{2}}(c+d x)} \]

[In]

Integrate[(a + a*Sec[c + d*x])/Cos[c + d*x]^(7/2),x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*((189*Cos[c] + 85*Cos[d*x] - 85*Cos[2*c + d*x] + 231*Cos[c + 2*d*x] +
 21*Cos[3*c + 2*d*x] + 25*Cos[2*c + 3*d*x] - 25*Cos[4*c + 3*d*x] + 63*Cos[3*c + 4*d*x])*Csc[c] - 200*Cos[c + d
*x]^4*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[C
ot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] - (126*Cos[c + d*x]^3*Sec[c]*(-2*HypergeometricPFQ[{-1/2, -1/4}, {
3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]] + (3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x
+ ArcTan[Tan[c]]])*Csc[c]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2
])))/(840*d*Cos[c + d*x]^(7/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(436\) vs. \(2(167)=334\).

Time = 12.17 (sec) , antiderivative size = 437, normalized size of antiderivative = 3.24

method result size
default \(-\frac {4 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{40 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{3}}-\frac {3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{5 \sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+\frac {44 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{10 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{112 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{4}}-\frac {5 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{84 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(437\)

[In]

int((a+a*sec(d*x+c))/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(-1/40*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-3/5*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2
*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+44/105*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c
)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3/10*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/112*cos(1/2*d*x+1/2*c)*(-
2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/84*cos(1/2*d*x+1/2*c)*(-2*si
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x
+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.47 \[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-25 i \, \sqrt {2} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} a \cos \left (d x + c\right )^{4} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 63 i \, \sqrt {2} a \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 63 i \, \sqrt {2} a \cos \left (d x + c\right )^{4} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (63 \, a \cos \left (d x + c\right )^{3} + 25 \, a \cos \left (d x + c\right )^{2} + 21 \, a \cos \left (d x + c\right ) + 15 \, a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/105*(-25*I*sqrt(2)*a*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*I*sqrt(2)
*a*cos(d*x + c)^4*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 63*I*sqrt(2)*a*cos(d*x + c)^4*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 63*I*sqrt(2)*a*cos(d*x + c)^
4*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(63*a*cos(d*x + c)^3 +
 25*a*cos(d*x + c)^2 + 21*a*cos(d*x + c) + 15*a)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {a \sec \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)/cos(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {a \sec \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)/cos(d*x + c)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 14.08 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.64 \[ \int \frac {a+a \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {7}{4},\frac {1}{2};\ -\frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int((a + a/cos(c + d*x))/cos(c + d*x)^(7/2),x)

[Out]

(2*a*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2)
) + (2*a*sin(c + d*x)*hypergeom([-7/4, 1/2], -3/4, cos(c + d*x)^2))/(7*d*cos(c + d*x)^(7/2)*(sin(c + d*x)^2)^(
1/2))